264 research outputs found

    Source Dimensions in Ultrarelativistic Heavy Ion Collisions

    Full text link
    Recent experiments on pion correlations, interpreted as interferometric measurements of the collision zone, are compared with models that distinguish a prehadronic phase and a hadronic phase. The models include prehadronic longitudinal expansion, conversion to hadrons in local kinetic equilibrium, and rescattering of the produced hadrons. We find that the longitudinal and outward radii are surprisingly sensitive to the algorithm used for two-body collisions. The longitudinal radius measured in collisions of 200 GeV/u sulfur nuclei on a heavy target requires the existence of a prehadronic phase which converts to the hadronic phase at densities around 0.8-1.0 GeV/fm3^3. The transverse radii cannot be reproduced without introducing more complex dynamics into the transverse expansion.Comment: RevTeX 3.0, 28 pages, 6 figures, not included, revised version, major change is an additional discussion of the classical two-body collision algorithm, a (compressed) postscript file of the complete paper including figures can be obtained from Authors or via anonymous ftp at ftp://ftp_int.phys.washington.edu/pub/herrmann/pisource.ps.

    On Measuring Split-SUSY Neutralino and Chargino Masses at the LHC

    Full text link
    In Split-Supersymmetry models, where the only non-Standard Model states produceable at LHC-energies consist of a gluino plus neutralinos and charginos, it is conventionally accepted that only mass differences among these latter are measureable at the LHC. The present work shows that application of a simple `Kinematic Selection' technique allows full reconstruction of neutralino and chargino masses from one event, in principle. A Monte Carlo simulation demonstrates the feasibilty of using this technique at the LHC.Comment: 17 pages, 4 figures; EPJC versio

    Virtual Effects of Split SUSY in Higgs Productions at Linear Colliders

    Full text link
    In split supersymmetry the gauginos and higgsinos are the only supersymmetric particles possibly accessible at foreseeable colliders like the CERN Large Hadron Collider (LHC) and the International Linear Collider (ILC). In order to account for the cosmic dark matter measured by WMAP, these gauginos and higgsinos are stringently constrained and could be explored at the colliders through their direct productions and/or virtual effects in some processes. The clean environment and high luminosity of the ILC render the virtual effects of percent level meaningful in unraveling the new physics effects. In this work we assume split supersymmetry and calculate the virtual effects of the WMAP-allowed gauginos and higgsinos in Higgs productions e+e- -> Z h and e+e- -> \nu_e \bar_\nu_e h through WW fusion at the ILC. We find that the production cross section of e+e- -> Zh can be altered by a few percent in some part of the WMAP-allowed parameter space, while the correction to the WW-fusion process e+e- -> \nu_e \bar_\nu_e h is below 1%. Such virtual effects are correlated with the cross sections of chargino pair productions and can offer complementary information in probing split supersymmetry at the colliders.Comment: more discussions added (7 pages, 10 figs

    Indexing Information for Data Forensics

    Get PDF
    We introduce novel techniques for organizing the indexing structures of how data is stored so that alterations from an original version can be detected and the changed values specifically identified. We give forensic constructions for several fundamental data structures, including arrays, linked lists, binary search trees, skip lists, and hash tables. Some of our constructions are based on a new reduced-randomness construction for nonadaptive combinatorial group testing

    Configuration-interaction calculations of positron binding to zinc and cadmium

    Get PDF
    The configuration-interaction method is applied to the study of positronic zinc (e+Zn) and positronic cadmium (e+Cd). The estimated binding energies and annihilation rates were 0.00373 hartree and 0.42×109 sec-1 for e+Zn and 0.006 10 hartree and 0.56×109 sec-1 for e+Cd. The low-energy elastic cross section and Zeff were estimated from a model potential that was tuned to the binding energies and annihilation rates. Since the scattering lengths were positive (14.5a0 for Zn and 11.6a0 for Cd) the differential cross sections are larger at backward angles than at forward angles just above threshold. The possibilities of measuring differential cross sections to confirm positron binding to these atoms is discussed

    The first Hubble diagram and cosmological constraints using superluminous supernovae

    Get PDF
    This paper has gone through internal review by the DES collaboration. It has Fermilab preprint number 19-115-AE and DES publication number 13387. We acknowledge support from EU/FP7- ERC grant 615929. RCN would like to acknowledge support from STFC grant ST/N000688/1 and the Faculty of Technology at the University of Portsmouth. LG was funded by the European Union’s Horizon 2020 Framework Programme under the Marie Skłodowska- Curie grant agreement no. 839090. This work has been partially supported by the Spanish grant PGC2018-095317-B-C21 within the European Funds for Regional Development (FEDER). Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundac¸ ˜ao Carlos Chagas Filho de Amparo `a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cient´ıfico e Tecnol´ogico and the Minist´erio da Ciˆencia, Tecnologia e Inovac¸ ˜ao, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energ´eticas, Medioambientales y Tecnol ´ogicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgen¨ossische Technische Hochschule (ETH) Z¨urich, Fermi NationalAccelerator Laboratory, theUniversity of Illinois atUrbana- Champaign, the Institut de Ci`encies de l’Espai (IEEC/CSIC), the Institut de F´ısica d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universit¨at M¨unchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under grant numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015- 71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV- 2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478.We acknowledge support from the Australian Research Council Centre of Excellence for All-skyAstrophysics (CAASTRO), through project number CE110001020, and the Brazilian Instituto Nacional de Ciˆencia e Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2). This paper has been authored by Fermi Research Alliance, LLC under Contract No.DE-AC02-07CH11359 with theU.S.Department of Energy, Office of Science, Office of High Energy Physics. The United States Government retains and the publisher, by accepting the paper for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this paper, or allow others to do so, for United States Government purposes.We present the first Hubble diagram of superluminous supernovae (SLSNe) out to a redshift of two, together with constraints on the matter density, M, and the dark energy equation-of-state parameter, w(≡p/ρ). We build a sample of 20 cosmologically useful SLSNe I based on light curve and spectroscopy quality cuts. We confirm the robustness of the peak–decline SLSN I standardization relation with a larger data set and improved fitting techniques than previous works. We then solve the SLSN model based on the above standardization via minimization of the χ2 computed from a covariance matrix that includes statistical and systematic uncertainties. For a spatially flat cold dark matter ( CDM) cosmological model, we find M = 0.38+0.24 −0.19, with an rms of 0.27 mag for the residuals of the distance moduli. For a w0waCDM cosmological model, the addition of SLSNe I to a ‘baseline’ measurement consisting of Planck temperature together with Type Ia supernovae, results in a small improvement in the constraints of w0 and wa of 4 per cent.We present simulations of future surveys with 868 and 492 SLSNe I (depending on the configuration used) and show that such a sample can deliver cosmological constraints in a flat CDM model with the same precision (considering only statistical uncertainties) as current surveys that use Type Ia supernovae, while providing a factor of 2–3 improvement in the precision of the constraints on the time variation of dark energy, w0 and wa. This paper represents the proof of concept for superluminous supernova cosmology, and demonstrates they can provide an independent test of cosmology in the high-redshift (z > 1) universe.EU/FP7-ERC grant 615929STFC grant ST/N000688/1Faculty of Technology at the University of PortsmouthEuropean Union’s Horizon 2020 Framework Programme under the Marie Skłodowska- Curie grant agreement no. 839090Spanish grant PGC2018-095317-B-C21 within the European Funds for Regional Development (FEDER)U.S. Department of EnergyU.S. National Science FoundationMinistry of Science and Education of SpainScience and Technology Facilities Council of the United KingdomHigher Education Funding Council for EnglandNational Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign,Kavli Institute of Cosmological Physics at the University of ChicagoCenter for Cosmology and Astro-Particle Physics at the Ohio State UniversityMitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacão Carlos Chagas Filho de Amparo `a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciencia, Tecnologia e InovacãoDeutsche ForschungsgemeinschaftCollaborating Institutions in the Dark Energy Survey.National Science Foundation under grant numbers AST-1138766 and AST-1536171.T MINECO under grants AYA2015- 71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV- 2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union.CERCA program of the Generalitat de Catalunya.European Research Council under the European Union Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478.Australian Research Council Centre of Excellence for All-skyAstrophysics (CAASTRO), through project number CE110001020Brazilian Instituto Nacional de Ciˆencia e Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2)Fermi Research Alliance, LLC under Contract No.DE-AC02-07CH11359 with theU.S.Department of Energy, Office of Science, Office of High Energy Physic

    First cosmology results using SNe Ia from the dark energy survey: analysis, systematic uncertainties, and validation

    Get PDF
    International audienceWe present the analysis underpinning the measurement of cosmological parameters from 207 spectroscopically classified type Ia supernovae (SNe Ia) from the first three years of the Dark Energy Survey Supernova Program (DES-SN), spanning a redshift range of 0.01
    corecore